125 research outputs found

    Mucosa-associated bacterial diversity in necrotizing enterocolitis

    Get PDF
    Background: Previous studies of infant fecal samples have failed to clarify the role of gut bacteria in the pathogenesis of NEC. We sought to characterize bacterial communities within intestinal tissue resected from infants with and without NEC. Methods: 26 intestinal samples were resected from 19 infants, including 16 NEC samples and 10 non-NEC samples. Bacterial 16S rRNA gene sequences were amplified and sequenced. Analysis allowed for taxonomic identification, and quantitative PCR was used to quantify the bacterial load within samples. Results: NEC samples generally contained an increased total burden of bacteria. NEC and non-NEC sample sets were both marked by high inter-individual variability and an abundance of opportunistic pathogens. There was no statistically significant distinction between the composition of NEC and non-NEC microbial communities. K-means clustering enabled us to identify several stable clusters, including clusters of NEC and midgut volvulus samples enriched with Clostridium and Bacteroides. Another cluster containing both NEC and non-NEC samples was marked by an abundance of Enterobacteriaceae and decreased diversity among NEC samples. Conclusions: The results indicate that NEC is a disease without a uniform pattern of microbial colonization, but that NEC is associated with an abundance of strict anaerobes and a decrease in community diversity

    Discovery and Validation of a New Class of Small Molecule Toll-Like Receptor 4 (TLR4) Inhibitors

    Get PDF
    Many inflammatory diseases may be linked to pathologically elevated signaling via the receptor for lipopolysaccharide (LPS), toll-like receptor 4 (TLR4). There has thus been great interest in the discovery of TLR4 inhibitors as potential anti-inflammatory agents. Recently, the structure of TLR4 bound to the inhibitor E5564 was solved, raising the possibility that novel TLR4 inhibitors that target the E5564-binding domain could be designed. We utilized a similarity search algorithm in conjunction with a limited screening approach of small molecule libraries to identify compounds that bind to the E5564 site and inhibit TLR4. Our lead compound, C34, is a 2-acetamidopyranoside (MW 389) with the formula C17H27NO9, which inhibited TLR4 in enterocytes and macrophages in vitro, and reduced systemic inflammation in mouse models of endotoxemia and necrotizing enterocolitis. Molecular docking of C34 to the hydrophobic internal pocket of the TLR4 co-receptor MD-2 demonstrated a tight fit, embedding the pyran ring deep inside the pocket. Strikingly, C34 inhibited LPS signaling ex-vivo in human ileum that was resected from infants with necrotizing enterocolitis. These findings identify C34 and the β-anomeric cyclohexyl analog C35 as novel leads for small molecule TLR4 inhibitors that have potential therapeutic benefit for TLR4-mediated inflammatory diseases. © 2013 Neal et al

    Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first line anti-tuberculosis drugs isoniazid (INH), rifampicin (RIF) and pyrazinamide (PZA) continues to be the effective drugs in the treatment of tuberculosis, however, the use of these drugs is associated with toxic reactions in tissues, particularly in the liver, leading to hepatitis. Silymarin, a standard plant extract with strong antioxidant activity obtained from <it>S. marianum</it>, is known to be an effective agent for liver protection and liver regeneration. The aim of this study was to investigate the protective actions of silymarin against hepatotoxicity caused by different combinations of anti-tuberculosis drugs.</p> <p>Methods</p> <p>Male Wistar albino rats weighing 250–300 g were used to form 6 study groups, each group consisting of 10 rats. Animals were treated with intra-peritoneal injection of isoniazid (50 mg/kg) and rifampicin (100 mg/kg); and intra-gastric administration of pyrazinamid (350 mg/kg) and silymarin (200 mg/kg). Hepatotoxicity was induced by a combination of drugs with INH+RIF and INH+RIF+PZA. Hepatoprotective effect of silymarin was investigated by co-administration of silymarin together with the drugs. Serum biochemical tests for liver functions and histopathological examination of livers were carried out to demonstrate the protection of liver against anti-tuberculosis drugs by silymarin.</p> <p>Results</p> <p>Treatment of rats with INH+RIF or INH+RIF+PZA induced hepatotoxicity as evidenced by biochemical measurements: serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities and the levels of total bilirubin were elevated, and the levels of albumin and total protein were decreased in drugs-treated animals. Histopathological changes were also observed in livers of animals that received drugs. Simultaneous administration of silymarin significantly decreased the biochemical and histological changes induced by the drugs.</p> <p>Conclusion</p> <p>The active components of silymarin had protective effects against hepatotoxic actions of drugs used in the chemotherapy of tuberculosis in animal models. Since no significant toxicity of silymarin is reported in human studies, this plant extract can be used as a dietary supplement by patients taking anti-tuberculosis medications.</p

    Transactivation of EGFR by LPS induces COX-2 expression in enterocytes

    Get PDF
    Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal morbidity and mortality in preterm infants. NEC is characterized by an exaggerated inflammatory response to bacterial flora leading to bowel necrosis. Bacterial lipopolysaccharide (LPS) mediates inflammation through TLR4 activation and is a key molecule in the pathogenesis of NEC. However, LPS also induces cyclooxygenase-2 (COX-2), which promotes intestinal barrier restitution through stimulation of intestinal cell survival, proliferation, and migration. Epidermal growth factor receptor (EGFR) activation prevents experimental NEC and may play a critical role in LPS-stimulated COX-2 production. We hypothesized that EGFR is required for LPS induction of COX-2 expression. Our data show that inhibiting EGFR kinase activity blocks LPS-induced COX-2 expression in small intestinal epithelial cells. LPS induction of COX-2 requires Src-family kinase signaling while LPS transactivation of EGFR requires matrix metalloprotease (MMP) activity. EGFR tyrosine kinase inhibitors block LPS stimulation of mitogen-activated protein kinase ERK, suggesting an important role of the MAPK/ERK pathway in EGFR-mediated COX-2 expression. LPS stimulates proliferation of IEC-6 cells, but this stimulation is inhibited with either the EGFR kinase inhibitor AG1478, or the selective COX-2 inhibitor Celecoxib. Taken together, these data show that EGFR plays an important role in LPS-induction of COX-2 expression in enterocytes, which may be one mechanism for EGF in inhibition of NEC

    Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis

    Get PDF
    Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al

    Unexpected Ecological Resilience in Bornean Orangutans and Implications for Pulp and Paper Plantation Management

    Get PDF
    Ecological studies of orangutans have almost exclusively focused on populations living in primary or selectively logged rainforest. The response of orangutans to severe habitat degradation remains therefore poorly understood. Most experts assume that viable populations cannot survive outside undisturbed or slightly disturbed forests. This is a concern because nearly 75% of all orangutans live outside protected areas, where degradation of natural forests is likely to occur, or where these are replaced by planted forests. To improve our understanding of orangutan survival in highly altered forest habitats, we conducted population density surveys in two pulp and paper plantation concessions in East Kalimantan, Indonesia. These plantations consist of areas planted with fast-growing exotics intermixed with stands of highly degraded forests and scrublands. Our rapid surveys indicate unexpectedly high orangutan densities in plantation landscapes dominated by Acacia spp., although it remains unclear whether such landscapes can maintain long-term viable populations. These findings indicate the need to better understand how plantation-dominated landscapes can potentially be incorporated into orangutan conservation planning. Although we emphasize that plantations have less value for overall biodiversity conservation than natural forests, they could potentially boost the chances of orangutan survival. Our findings are based on a relatively short study and various methodological issues need to be addressed, but they suggest that orangutans may be more ecologically flexible than previously thought

    Expression and Function of Osteopontin in Vascular Adventitial Fibroblasts and Pathological Vascular Remodeling

    Get PDF
    Osteopontin is known to play important roles in various diseases including vascular disorders. However, little is known about its expression and function in vascular adventitial fibroblasts. Adventitial fibroblasts have been shown to play a key role in pathological vascular remodeling associating with various vascular disorders. In this study, we measured activation of Osteopontin and its biological functions in cultured adventitial fibroblasts and injured rat carotid injury arteries induced by balloon angioplasty. Our results showed that angiotensin II and aldosterone increased Osteopontin expression in adventitial fibroblasts in a time- and concentration-dependent manner. MAPKs and AP-1 pathways were involved in Osteopontin upregulation. In addition, Adventitial fibroblast migration stimulated by Angiotensin II and aldosterone required OPN expression. Perivascular delivery of antisense oligonucleotide for Osteopontin suppressed neointimal formation post-injury. We concluded that upregulation of Osteopontin expression in adventitial fibroblasts might be important in the pathogenesis of vascular remodeling after arterial injury

    Molecular analysis of metastasis in a polyomavirus middle T mouse model: the role of osteopontin

    Get PDF
    INTRODUCTION: In order to study metastatic disease, we employed the use of two related polyomavirus middle T transgenic mouse tumor transplant models of mammary carcinoma (termed Met and Db) that display significant differences in metastatic potential. METHODS: Through suppression subtractive hybridization coupled to the microarray, we found osteopontin (OPN) to be a highly expressed gene in the tumors of the metastatic mouse model, and a lowly expressed gene in the tumors of the lowly metastatic mouse model. We further analyzed the role of OPN in this model by examining sense and antisense constructs using in vitro and in vivo methods. RESULTS: With in vivo metastasis assays, the antisense Met cells showed no metastatic tumor formation to the lungs of recipient mice, while wild-type Met cells, with higher levels of OPN, showed significant amounts of metastasis. The Db cells showed a significantly reduced metastasis rate in the in vivo metastasis assay as compared with the Met cells. Db cells with enforced overexpression of OPN showed elevated levels of OPN but did not demonstrate an increase in the rate of metastasis compared with the wild-type Db cells. CONCLUSIONS: We conclude that OPN is an essential regulator of the metastatic phenotype seen in polyomavirus middle T-induced mammary tumors. Yet OPN expression alone is not sufficient to cause metastasis. These data suggest a link between metastasis and phosphatidylinositol-3-kinase-mediated transcriptional upregulation of OPN, but additional phosphatidylinositol-3-kinase-regulated genes may be essential in precipitating the metastasis phenotype in the polyomavirus middle T model
    corecore